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Inorganic and organic nanotubes have received much attention

due to their potential applications in nanoelectronics, molecular
devices and sensors, ion exchange, and catdlykiss well
established that single-walled carbon nanotubes (SWNTS) exist in
chiral forms because of the helical wind of the graphitic sheets
around the tube ax&Recent theoretical studies indicated that chiral

SWNTs cannot be used as enantiospecific adsorbents because o

the lack of functional group30On the other hand, it is conceivable
to construct nanotubular structures using intrinsically chiral organic
and metal-organic helices as the building blocks. The ability to
incorporate other functionalities into such nanotubular structures
will expand their utility in enantioselective processes. Metal-
containing helical chairtsare ideally suited for the hierarchical

assembly into nanotubular architectures. Atwood et al. reported the

only example of a nanometer-scale helical tubule formed by linking
p-sulfonatocalix[4]arene with lanthanide ioh%We rationalize that
the twisted binding sites of chiral rigid ditopic bridging ligands
based on the 1'-binaphthyl unit will induce the formation of helical
structures when linked by a linear metal-connecting pbfdtich
homochiral helices can hierarchically assemble into nanotubular
architectures with utilizable functional groups. We report here the
synthesis and characterization of periodically ordered homochiral
nanotubes assembled via interlocking quintuple helices formed from
Ni(acac) andC,-symmetric 1,1-binaphthyl-6'®ipyridinesL ; and
L,8

EnantiopureL; and L, were synthesized by Heck coupling
between 4-vinylpyridine and 6:@libromo-2,2-diethoxy-1,1bi-
naphthalene and 6;8ibromo-2,2-(pentaethylene glycol)-1'41
binaphthalenin 94% and 72% yield, respectively. Single crystals
of [Ni(acac)(L 1)]-3CHsCN-6H.0, 1, and [Ni(acac)L 5)]:2CHsCN-
5H,0, 2, were synthesized in good yields by heating a mixture of
Ni(acac}(H,0), andL; or L, in CH3CN and CHCI, at 70°C for
2 days, respectivelyl and 2 were formulated on the basis of
microanalysis, IR, and thermogravimetric analyX¥es.

(9-1 adopts a chiral framework assembled from interlocking
nanotubes that are constructed from quintuple helic&s1 (
crystallizes in the chiral space gro®d,2,2,** with one Ni(acac)
unit, oneL ; ligand, three CHCN, and six water guest molecules

; E-mail: wlin@unc.edu

Figure 1.
(acac) andL ;. (b) Parallel association of five helices into a chiral nanotube
with an opening of-2 x 2 nm. (c) A schematic illustrating the interlocking
of adjacent helical chains. (d) A space-filling model showing the open
channels within the 3D chiral framework df. The included solvent
molecules have been omitted.

(a) Left-handed dhelical chain ofl built from alternating Ni-

with a pitch of 47.35(1) A. The naphthyl rings bf have a dihedral
angle of 84.4. The bulk of the naphthyl moieties are pointing away
from the helical axis to generate a hollow cylinder. Interestingly,
five infinite helical chains associate in parallel to form the wall of

a tetragonal nanotube with an opening~e x 2 nm (Figure 1b).
Each helix further intertwines with four other helices from four
different nanotubes to give a periodically ordered interlocked
architecture (Figure 1c). The framework is stabilized by two types
of strong m---r stacking interactions among the intertwined
vinylnaphthyl groups: parallel stacking with face to face separations
of 3.24 and 3.26 A and nonparallel stacking with the nearest carbon
to carbon separations of 3.49 and 3.68 A. Interlocking of the
nanotubes leads to a 3D chiral framework with the eclipsing of
nanotube corners. Partially eclipsed nanotubes have open channels
of 1.7 x 1.7 nm in dimensions which are filled with GAN and
water guest molecules. The packing of adjacent tubes along the

in the asymmetric unit. The Ni center coordinates to two acac anions c-axis also leads to smaller open channels-@fx 11 A that are

in the equatorial plane and to two pyridyl groups of two different
L, in trans fashion with an NNi—N angle of 177.6(2) The Ni-
(acac) units are bridged by binaphthyl backbonesLgfto form

an infinite helical chain running along tleeaxis (Figure 1a). The
left-handed helix is generated around the crystallographexis

6014 = J. AM. CHEM. SOC. 2003, 125, 6014—6015

occupied by water molecules. Calculations using PLATON show
that the effective volume for inclusion is greater than 6242 A
comprising 45.4% of the crystal volung.

We have successfully incorporated chiral crown ethers into the
walls of nanotubes by modifying the 1;positions ofL;. (R)-2

10.1021/ja029926s CCC: $25.00 © 2003 American Chemical Society
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Figure 2. (a) Right-handed helical chain @fbuilt from Ni(acac) andL».

(b) Interlocking of each nanotube with four other nanotubes. (c) A space-
filling model showing the open channels within the 3D chiral framework
of 2. The included solvent molecules have been omitted.

crystallizes in chiral space group4s2,;213 and adopts a tubular
architecture similar to that df. The right-handed helix consists of
alternating Ni(acag)andL , around the 4axis with a pitch of 47.48-
(1) A (Figure 2a). The naphthyl rings &f, have a dihedral angle
of 84.5". Five helices associate in parallel to form a nanotube with
an opening of~2 x 2 nm. These nanotubes interlock each other
to form a chiral 3D framework with all of the crown ethers oriented
into the adjacent tubes (Figure 2b). The framework2a$ also
stabilized by two types of---x interactions among the intertwined
vinylnaphthyl groupg# The tubular channels dt are decorated
with chiral crown ethers (Figure 2a), while the residual void space
is filled with CH;CN and water molecules. The effective volume
for inclusion is ~5488.8 &, comprising~40% of the crystal

volume. The placement of chiral crown ethers inside the nanotubes

promises to rende? useful for enantioselective processes. Chiral
crown ethers are well known for enantioselective interactions with
organic cations such as protonated amino atdisis interesting

to note that the handedness dfand 2 is determined by the
enantiomer oL ; andL , used, as evidenced by the fact thg¢-1
adopts a left-handed tubular structure, whiR-2 adopts a right-
handed structure. CD spectra of bdttand2 made fromR- and
Senantiomers ofL; and L, are mirror images of each other,
indicating their enantiomeric nature.

A combination of TGA and PXRD experiments indicates that
the frameworks oflL and 2 remain intact upon complete removal
of all of the included CHCN and water molecules. PXRD patterns
of the evacuated solids df and 2 are similar to those of their
pristine solids. Preliminary results indicated thatadily adsorbs

aromatic molecules such as toluene, xylenes, and nitrobenzene
(Supporting Information). A systematic investigation is underway
on the inclusion properties, guest exchange, and enantioselective
interactions ofl and 2.

In conclusion, we have demonstrated the self-assembly of
periodically ordered, interlocked homochiral nanotubes based on
helical chains that are built fror@,-symmetric bipyridyl ligands
and linear metal-connecting points. The ability to incorporate chiral
functionalities inside the interlocked nanotubes promises to lead
to novel chiral zeolitic materials exploitable for enantioselective
separations and catalysis.
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